Creative AI on the iPhone (with GAN) and Dynamic Loading of CoreML models

Zedge summer interns developed a very cool app using ARKit and CoreML (on iOS11). As parts of their journey the published 2 blog posts on the Zedge corporate web site related to:

  1. How to develop and run Generative Adversarial Networks (GAN) for Creative AI on the iPhone using Apple’s CoreML tools, check out their blog post about it.
  2. Deep Learning models (e.g. for GAN) can take a lot of space on a mobile device (tens of Megabytes to perhaps even Gigabytes), in order to keep initial app download size relatively low it can be useful to dynamically load only the models you need. Check out their blog post about various approaches for hotswapping CoreML models.

Best regards,

Amund Tveit 

Continue Reading

Early Experiences with Deep Learning on a Laptop with Nvidia GTX 1070 GPU – part 1

Last August Nvidia brought desktop-class graphics to laptops with GeForce 1060, 1070 and 1080. Laptops with such GPUs seems to be primarily targeted towards gaming, but they can also be used for Deep Learning, e.g. with TensorFlow, Pytorch or Keras. A laptop for Deep Learning can be a convenient supplement to using GPUs in the Cloud (Nvidia K80 or P100) or buying a desktop or server machine with perhaps even more powerful GPUs than in a laptop (e.g. the Pascal Titan X or the new 1080 TI).

1. Choice of GPU
I decided on the GTX 1070 GPU since it had

  1. Same amount of GPU RAM as GTX 1080 – 8 GB – enough to develop or test a large range of CNN and GAN models
  2. Was cheaper and used less energy than GTX 1080
  3. High performance

2. Choice of Laptop and Configuration
I chose the Acer Predator G9-593, it had a nice spec and was upgradable to several disks and up to 64 GB of RAM

There are several youtube videos of people unboxing the G9-593 and looking into how to upgrade hardware (e.g RAM and disks)

I first installed Ubuntu 14.04 with Cuda (8.0), cuDNN, Nvidia drivers, nvidia-docker and then later upgraded to Ubuntu 16.04 – check out the blog post (by Donald Kinghorn) Install Ubuntu 16.04 or 14.04 and CUDA 8 and 7.5 for NVIDIA Pascal GPU. Then I installed TensorFlow and Pytorch, got some issues with GPU support for Pytorch but I assume it is just finger trouble on my side, but Tensorflow worked nicely on the GPU as you can see in the section below.

3. Example training the Pix2Pix Conditional Adversarial Network in TensorFlow on the Laptop

To test Deep Learning on the laptop I chose the pix2pix-tensorflow project, see examples below followed by a gif of actual training on the laptop.pix2pix-tensorflow

Best regards,
Amund Tveit (@atveit)


Appendix – Deep Learning benchmark of Nvidia GTX 1070

The benchmark in the table below – from – was very favorable in the direction of 1070 (note that this compares 1080 and 1070 to older generation GPUs)


Continue Reading

Deep Learning with Generative and Generative Adverserial Networks – ICLR 2017 Discoveries

The 5th International Conference on Learning Representation (ICLR 2017) is coming to Toulon, France (April 24-26 2017).

This blog post gives an overview of Deep Learning with Generative and Adverserial Networks related papers submitted to ICLR 2017, see underneath for the list of papers. Want to learn about these topics? See OpenAI’s article about Generative Models and Ian Goodfellow’s paper about Generative Adversarial Networks.

Best regards,

Amund Tveit

ICLR 2017 – Generative and Generative Adversarial Papers

  1. Unsupervised Learning Using Generative Adversarial Training And Clustering – Authors: Vittal Premachandran, Alan L. Yuille
  2. Improving Generative Adversarial Networks with Denoising Feature Matching – Authors: David Warde-Farley, Yoshua Bengio
  3. Generative Adversarial Parallelization – Authors: Daniel Jiwoong Im, He Ma, Chris Dongjoo Kim, Graham Taylor
  4. b-GAN: Unified Framework of Generative Adversarial Networks – Authors: Masatosi Uehara, Issei Sato, Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
  5. Generative Adversarial Networks as Variational Training of Energy Based Models – Authors: Shuangfei Zhai, Yu Cheng, Rogerio Feris, Zhongfei Zhang
  6. Boosted Generative Models – Authors: Aditya Grover, Stefano Ermon
  7. Adversarial examples for generative models – Authors: Jernej Kos, Dawn Song
  8. Mode Regularized Generative Adversarial Networks – Authors: Tong Che, Yanran Li, Athul Jacob, Yoshua Bengio, Wenjie Li
  9. Variational Recurrent Adversarial Deep Domain Adaptation – Authors: Sanjay Purushotham, Wilka Carvalho, Tanachat Nilanon, Yan Liu
  10. Structured Interpretation of Deep Generative Models – Authors: N. Siddharth, Brooks Paige, Alban Desmaison, Jan-Willem van de Meent, Frank Wood, Noah D. Goodman, Pushmeet Kohli, Philip H.S. Torr
  11. Inference and Introspection in Deep Generative Models of Sparse Data – Authors: Rahul G. Krishnan, Matthew Hoffman
  12. Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy – Authors: Dougal J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex Smola, Arthur Gretton
  13. Unsupervised sentence representation learning with adversarial auto-encoder – Authors: Shuai Tang, Hailin Jin, Chen Fang, Zhaowen Wang
  14. Unsupervised Program Induction with Hierarchical Generative Convolutional Neural Networks – Authors: Qucheng Gong, Yuandong Tian, C. Lawrence Zitnick
  15. A Theoretical Framework for Robustness of (Deep) Classifiers against Adversarial Noise – Authors: Beilun Wang, Ji Gao, Yanjun Qi
  16. On the Quantitative Analysis of Decoder-Based Generative Models – Authors: Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, Roger Grosse
  17. Evaluation of Defensive Methods for DNNs against Multiple Adversarial Evasion Models – Authors: Xinyun Chen, Bo Li, Yevgeniy Vorobeychik
  18. Calibrating Energy-based Generative Adversarial Networks – Authors: Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard Hovy, Aaron Courville
  19. Inverse Problems in Computer Vision using Adversarial Imagination Priors – Authors: Hsiao-Yu Fish Tung, Katerina Fragkiadaki
  20. Towards Principled Methods for Training Generative Adversarial Networks – Authors: Martin Arjovsky, Leon Bottou
  21. Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning – Authors: Dilin Wang, Qiang Liu
  22. Multi-view Generative Adversarial Networks – Authors: Mickaël Chen, Ludovic Denoyer
  23. LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation – Authors: Jianwei Yang, Anitha Kannan, Dhruv Batra, Devi Parikh
  24. Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks – Authors: Emily Denton, Sam Gross, Rob Fergus
  25. Generative Adversarial Networks for Image Steganography – Authors: Denis Volkhonskiy, Boris Borisenko, Evgeny Burnaev
  26. Unrolled Generative Adversarial Networks – Authors: Luke Metz, Ben Poole, David Pfau, Jascha Sohl-Dickstein
  27. Generative Multi-Adversarial Networks – Authors: Ishan Durugkar, Ian Gemp, Sridhar Mahadevan
  28. Joint Multimodal Learning with Deep Generative Models – Authors: Masahiro Suzuki, Kotaro Nakayama, Yutaka Matsuo
  29. Fast Adaptation in Generative Models with Generative Matching Networks – Authors: Sergey Bartunov, Dmitry P. Vetrov
  30. Adversarially Learned Inference – Authors: Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier Mastropietro, Aaron Courville
  31. Perception Updating Networks: On architectural constraints for interpretable video generative models – Authors: Eder Santana, Jose C Principe
  32. Energy-based Generative Adversarial Networks – Authors: Junbo Zhao, Michael Mathieu, Yann LeCun
  33. Simple Black-Box Adversarial Perturbations for Deep Networks – Authors: Nina Narodytska, Shiva Kasiviswanathan
  34. Learning in Implicit Generative Models – Authors: Shakir Mohamed, Balaji Lakshminarayanan
  35. On Detecting Adversarial Perturbations – Authors: Jan Hendrik Metzen, Tim Genewein, Volker Fischer, Bastian Bischoff
  36. Delving into Transferable Adversarial Examples and Black-box Attacks – Authors: Yanpei Liu, Xinyun Chen, Chang Liu, Dawn Song
  37. Adversarial Feature Learning – Authors: Jeff Donahue, Philipp Krähenbühl, Trevor Darrell
  38. Generative Paragraph Vector – Authors: Ruqing Zhang, Jiafeng Guo, Yanyan Lan, Jun Xu, Xueqi Cheng
  39. Adversarial Machine Learning at Scale – Authors: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio
  40. Adversarial Training Methods for Semi-Supervised Text Classification – Authors: Takeru Miyato, Andrew M. Dai, Ian Goodfellow
  41. Sampling Generative Networks: Notes on a Few Effective Techniques – Authors: Tom White
  42. Adversarial examples in the physical world – Authors: Alexey Kurakin, Ian J. Goodfellow, Samy Bengio
  43. Improving Sampling from Generative Autoencoders with Markov Chains – Authors: Kai Arulkumaran, Antonia Creswell, Anil Anthony Bharath
  44. Neural Photo Editing with Introspective Adversarial Networks – Authors: Andrew Brock, Theodore Lim, J.M. Ritchie, Nick Weston
  45. Learning to Protect Communications with Adversarial Neural Cryptography – Authors: Martín Abadi, David G. Andersen

Sign up for Deep Learning newsletter!

Continue Reading