Deep Learning with Residual Networks

This posting is recent papers related to residual networks (i.e. very deep networks). Check out Microsoft Research’s paper Deep Residual Learning for Image Recognition and Kaiming He’s ICML 2016 Tutorial Deep Residual Learning, Deep Learning Gets Way Deeper

Best regards,
Amund Tveit

Year  Title Author
2016   Label distribution based facial attractiveness computation by deep residual learning  S Liu, B Li, Y Fan, Z Guo, A Samal
2016   Unsupervised Domain Adaptation with Residual Transfer Networks  M Long, J Wang, MI Jordan
2016   Deeper Depth Prediction with Fully Convolutional Residual Networks  I Laina, C Rupprecht, V Belagiannis, F Tombari
2016   Deep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis  Y Han, J Yoo, JC Ye
2016   Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex  Q Liao, T Poggio
2016   Deep Cross Residual Learning for Multitask Visual Recognition  B Jou, SF Chang
2016   Identity Mappings in Deep Residual Networks  K He, X Zhang, S Ren, J Sun
2016   Brain tumor classification of microscopy images using deep residual learning  Y Ishikawa, K Washiya, K Aoki, H Nagahashi
2016   Convolutional Residual Memory Networks  J Moniz, C Pal
2016   Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes  T Pohlen, A Hermans, M Mathias, B Leibe
2016   Aggregated Residual Transformations for Deep Neural Networks  S Xie, R Girshick, P Dollár, Z Tu, K He
2016   Deep residual networks for plankton classification  X Li, Z Cui
2016   Highway and Residual Networks learn Unrolled Iterative Estimation  K Greff, RK Srivastava, J Schmidhuber
2016   Estimating Depth from Monocular Images as Classification Using Deep Fully Convolutional Residual Networks  Y Cao, Z Wu, C Shen
2016   Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction  J Zhang, Y Zheng, D Qi
2016   Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising  K Zhang, W Zuo, Y Chen, D Meng, L Zhang
2016   Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning  C Szegedy, S Ioffe, V Vanhoucke
2016   Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution  W Yang, J Feng, J Yang, F Zhao, J Liu, Z Guo, S Yan
2016   FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics  TM Quan, DGC Hilderbrand, WK Jeong
2016   Deep Residual Hashing  S Conjeti, AG Roy, A Katouzian, N Navab
2016   Wide-Slice Residual Networks for Food Recognition  N Martinel, GL Foresti, C Micheloni
2016   VoxResNet: Deep Voxelwise Residual Networks for Volumetric Brain Segmentation  H Chen, Q Dou, L Yu, PA Heng
2015   Current challenges in glioblastoma: intratumour heterogeneity, residual disease and models to predict disease recurrence  HP Ellis, M Greenslade, B Powell, I Spiteri, A Sottoriva
2014   Background Prior Based Salient Object Detection via Deep Reconstruction Residual  J Han, D Zhang, X Hu, L Guo, J Ren, F Wu

You may also like

1 Comment

Leave a Reply

Your email address will not be published. Required fields are marked *