Keras Deep Learning with Apple’s CoreMLTools on iOS 11 – Part 1


This is a basic example of train and use a basic Keras neural network model (XOR) on iPhone using Apple’s coremltools on iOS11. Note that showing the integration starting from a Keras model to having it running in the iOS app is the main point and not the particular choice of model, in principle a similar approach could be used for any kind of Deep Learning model, e.g. generator part of Generative Adversarial Networks, a Recurrent Neural Network (or LSTM) or a Convolutional Neural Network.

For easy portability I chose to run the Keras part inside docker (i.e. could e.g. use nvidia-docker for a larger model that would need a GPU to train e.g. in the cloud or on a desktop or a powerful laptop). The current choice of Keras backend was TensorFlow, but believe it should also work for other backends (e.g. CNTK, Theano or MXNet). The code for this blog post is available at

Best regards,

Amund Tveit

1. Building and training Keras Model for XOR problem – PYTHON

1.1 Training data for XOR

1.2 Keras XOR Neural Network Model

1.3 Train the Keras model with Stochastic Gradient Descent (SGD)

1.4 Use Apple’s coreml tool to convert the Keras model to coreml model

2. Using the converted Keras model on iPhone – SWIFT

2.1 Create new Xcode Swift project and add keras_model.mlmodel


2.2 Inspect keras_model.mlmodel by clicking on it in xcode


2.3 Update ViewController.swift with prediction function

2.4 Run app with Keras model on iPhone and look at debug output

run output

0 xor 0 = 1 xor 1 = 0 (if rounding down), and 1 xor 0 = 0 xor 1 = 1 (if rounding up)


Sign up for Deep Learning newsletter!

Continue Reading

Deep Learning for Image Super-Resolution (Scale Up)


Scaling down images is a craft, scaling up images is an art

Since in the scaling down to a lower resolution you typically need to remove pixels, but in the case of scaling up you need to invent new pixels. But some Deep Learning models with Convolutional Neural Networks (and frequently Deconvolutional layers) has shown successful to scale up images, this is called Image Super-Resolution. These models are typically trained by taking high resolution images and reducing them to lower resolution and then train in the opposite way. Partially related: Recommend also checking out Odeon et. al’s’s publication: Deconvolution and Checkerboard Artifacts that goes into more detail about the one the core operators used in Image Super-Resolution.

Blog post Illustration Source: Eric Esteve’s 2013 article: Super Resolution bring high end camera image quality to smartphone.

Best regards,

Amund Tveit

Year  Title Author
2017   GUN: Gradual Upsampling Network for single image super-resolution  Y Zhao, R Wang, W Dong, W Jia, J Yang, X Liu, W Gao
2017   Dual Recovery Network with Online Compensation for Image Super-Resolution  S Xia, W Yang, T Zhao, J Liu
2017   A New Single Image Super-resolution Method Based on the Infinite Mixture Model  P Cheng, Y Qiu, X Wang, K Zhao
2017   Underwater Image Super-resolution by Descattering and Fusion  H Lu, Y Li, S Nakashima, H Kim, S Serikawa
2017   Single Image Super-Resolution with a Parameter Economic Residual-Like Convolutional Neural Network  Z Yang, K Zhang, Y Liang, J Wang
2017   Single Image Super-Resolution via Adaptive Transform-Based Nonlocal Self-Similarity Modeling and Learning-Based Gradient Regularization  H Chen, X He, L Qing, Q Teng
2017   Ensemble Based Deep Networks for Image Super-Resolution  Z Huang, L Wang, Y Gong, C Pan
2017   Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network  X Jia, X Xu, B Cai, K Guo
2017   Hyperspectral image super-resolution using deep convolutional neural network  Y Li, J Hu, X Zhao, W Xie, JJ Li
2016   Research on the Natural Image Super-Resolution Reconstruction Algorithm based on Compressive Perception Theory and Deep Learning Model  G Duan, W Hu, J Wang
2016   Image super-resolution with multi-channel convolutional neural networks  Y Kato, S Ohtani, N Kuroki, T Hirose, M Numa
2016   Image super-resolution reconstruction via RBM-based joint dictionary learning and sparse representation  Z Zhang, A Liu, Q Lei
2016   End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks  Y Wang, L Wang, H Wang, P Li
2016   Single image super-resolution using regularization of non-local steering kernel regression  K Zhang, X Gao, J Li, H Xia
2016   Single image super-resolution via blind blurring estimation and anchored space mapping  X Zhao, Y Wu, J Tian, H Zhang
2016   A Versatile Sparse Representation Based Post-Processing Method for Improving Image Super-Resolution  J Yang, J Guo, H Chao
2016   Robust Single Image Super-Resolution via Deep Networks with Sparse Prior.  D Liu, Z Wang, B Wen, J Yang, W Han, T Huang
2016   EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis  MSM Sajjadi, B Schölkopf, M Hirsch
2016   Is Image Super-resolution Helpful for Other Vision Tasks?  D Dai, Y Wang, Y Chen, L Van Gool
2016   Cluster-Based Image Super-resolution via Jointly Low-rank and Sparse Representation  N Han, Z Song, Y Li
2016   Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network  C Ledig, L Theis, F Huszar, J Caballero, A Aitken
2016   Image super-resolution using non-local Gaussian process regression  H Wang, X Gao, K Zhang, J Li
2016   A hybrid wavelet convolution network with sparse-coding for image super-resolution  X Gao, H Xiong
2016   Amortised MAP Inference for Image Super-resolution  CK Sønderby, J Caballero, L Theis, W Shi, F Huszár
2016   X-Ray fluorescence image super-resolution using dictionary learning  Q Dai, E Pouyet, O Cossairt, M Walton, F Casadio
2016   Image super-resolution based on convolution neural networks using multi-channel input  GY Youm, SH Bae, M Kim
2016   Deep Edge Guided Recurrent Residual Learning for Image Super-Resolution  W Yang, J Feng, J Yang, F Zhao, J Liu, Z Guo, S Yan
2016   Image Super-Resolution by PSOSEN of Local Receptive Fields Based Extreme Learning Machine  Y Song, B He, Y Shen, R Nian, T Yan
2016   Incorporating Image Priors with Deep Convolutional Neural Networks for Image Super-Resolution  Y Liang, J Wang, S Zhou, Y Gong, N Zheng
2015   Single Image Super-Resolution Via Bm3D Sparse Coding  K Egiazarian, V Katkovnik
2015   Learning a Deep Convolutional Network for Light-Field Image Super-Resolution  Y Yoon, HG Jeon, D Yoo, JY Lee, I Kweon
2015   Single Image Super-Resolution via Image Smoothing  Z Liu, Q Huang, J Li, Q Wang
2015   Deeply Improved Sparse Coding for Image Super-Resolution  Z Wang, D Liu, J Yang, W Han, T Huang
2015   Conditioned Regression Models for Non-Blind Single Image Super-Resolution  GRSSM Rüther, H Bischof
2015   How Useful Is Image Super-resolution to Other Vision Tasks?  D Dai, Y Wang, Y Chen, L Van Gool
2015   Learning Hierarchical Decision Trees for Single Image Super-Resolution  JJ Huang, WC Siu
2015   Single image super-resolution by approximated Heaviside functions  LJ Deng, W Guo, TZ Huang
2015   Jointly Optimized Regressors for Image Super-resolution  D Dai, R Timofte, L Van Gool
2015   Single Image Super-Resolution via Internal Gradient Similarity  Y Xian, Y Tian
2015   Image Super-Resolution Using Deep Convolutional Networks  C Dong, CC Loy, K He, X Tang
2015   Coupled Deep Autoencoder for Single Image Super-Resolution  K Zeng, J Yu, R Wang, C Li, D Tao
2015   Single Image Super-Resolution Using Maximizing Self-Similarity Prior  J Li, Y Wu, X Luo
2015   Accurate Image Super-Resolution Using Very Deep Convolutional Networks  J Kim, JK Lee, KM Lee
2015   Deeply-Recursive Convolutional Network for Image Super-Resolution  J Kim, JK Lee, KM Lee
2015   Single Face Image Super-Resolution via Solo Dictionary Learning  F Juefei
2014   Single image super-resolution via L0 image smoothing  Z Liu, Q Huang, J Li, Q Wang
Continue Reading

Deep Learning for Acoustic Modelling


This blog post has an overview papers related to acoustic modelling primarily for speech recognition but also speech generation (synthesis). See also for a broader set of (at the time of writing 73) recent Deep Learning papers related to acoustics for speech recognition and other applications of acoustics.

Acoustic Modelling is described in Wikipedia as: “An acoustic model is used in Automatic Speech Recognition to represent the relationship between an audio signal and the phonemes or other linguistic units that make up speech. The model is learned from a set of audio recordings and their corresponding transcripts”. 

Blog Post Illustration Photo Source: Professor Mark Gales‘ (University of Cambridge) 2009 presentation Acoustic Modelling for Speech Recognition: Hidden Markov Models and Beyond?

Best regards,

Amund Tveit

Year  Title Author
2017   Investigation on acoustic modeling with different phoneme set for continuous Lhasa Tibetan recognition based on DNN method  H Wang, K Khyuru, J Li, G Li, J Dang, L Huang
2017   Personalized Acoustic Modeling By Weakly Supervised Multi-Task Deep Learning Using Acoustic Tokens  CK Wei, CT Chung, HY Lee, LS Lee
2017   I-vector estimation as auxiliary task for multi-task learning based acoustic modeling for automatic speech recognition  G Pironkov, S Dupont, T Dutoit
2016   Graph-based Semi-Supervised Learning in Acoustic Modeling for Automatic Speech Recognition  Y Liu
2016   A Comprehensive Study of Deep Bidirectional LSTM RNNs for Acoustic Modeling in Speech Recognition  A Zeyer, P Doetsch, P Voigtlaender, R Schlüter, H Ney
2016   Improvements in IITG Assamese Spoken Query System: Background Noise Suppression and Alternate Acoustic Modeling  S Shahnawazuddin, D Thotappa, A Dey, S Imani
2016   DNN-Based Acoustic Modeling for Russian Speech Recognition Using Kaldi  I Kipyatkova, A Karpov
2015   Doubly Hierarchical Dirichlet Process Hmm For Acoustic Modeling  AHHN Torbati, J Picone
2015   Deep Learning for Acoustic Modeling in Parametric Speech Generation: A systematic review of existing techniques and future trends  ZH Ling, SY Kang, H Zen, A Senior, M Schuster
2015   Acoustic Modeling In Statistical Parametric Speech Synthesis–From Hmm To Lstm-Rnn  H Zen
2015   Acoustic Modeling of Bangla Words using Deep Belief Network  M Ahmed, PC Shill, K Islam, MAH Akhand
2015   Unified Acoustic Modeling using Deep Conditional Random Fields  Y Hifny
2015   Exploiting Low-Dimensional Structures To Enhance Dnn Based Acoustic Modeling In Speech Recognition  P Dighe, G Luyet, A Asaei, H Bourlard
2015   Ensemble Acoustic Modeling for CD-DNN-HMM Using Random Forests of Phonetic Decision Trees  T Zhao, Y Zhao, X Chen
2015   Deep Neural Networks for Acoustic Modeling  V from Embeds, G Hinton, L Deng, D Yu, G Dahl
2015   Integrating Articulatory Data in Deep Neural Network-based Acoustic Modeling  L Badino, C Canevari, L Fadiga, G Metta
2015   Deep learning in acoustic modeling for Automatic Speech Recognition and Understanding-an overview  I Gavat, D Militaru
Continue Reading

Early Experiences with Deep Learning on a Laptop with Nvidia GTX 1070 GPU – part 1

Last August Nvidia brought desktop-class graphics to laptops with GeForce 1060, 1070 and 1080. Laptops with such GPUs seems to be primarily targeted towards gaming, but they can also be used for Deep Learning, e.g. with TensorFlow, Pytorch or Keras. A laptop for Deep Learning can be a convenient supplement to using GPUs in the Cloud (Nvidia K80 or P100) or buying a desktop or server machine with perhaps even more powerful GPUs than in a laptop (e.g. the Pascal Titan X or the new 1080 TI).

1. Choice of GPU
I decided on the GTX 1070 GPU since it had

  1. Same amount of GPU RAM as GTX 1080 – 8 GB – enough to develop or test a large range of CNN and GAN models
  2. Was cheaper and used less energy than GTX 1080
  3. High performance

2. Choice of Laptop and Configuration
I chose the Acer Predator G9-593, it had a nice spec and was upgradable to several disks and up to 64 GB of RAM

There are several youtube videos of people unboxing the G9-593 and looking into how to upgrade hardware (e.g RAM and disks)

I first installed Ubuntu 14.04 with Cuda (8.0), cuDNN, Nvidia drivers, nvidia-docker and then later upgraded to Ubuntu 16.04 – check out the blog post (by Donald Kinghorn) Install Ubuntu 16.04 or 14.04 and CUDA 8 and 7.5 for NVIDIA Pascal GPU. Then I installed TensorFlow and Pytorch, got some issues with GPU support for Pytorch but I assume it is just finger trouble on my side, but Tensorflow worked nicely on the GPU as you can see in the section below.

3. Example training the Pix2Pix Conditional Adversarial Network in TensorFlow on the Laptop

To test Deep Learning on the laptop I chose the pix2pix-tensorflow project, see examples below followed by a gif of actual training on the laptop.pix2pix-tensorflow

Best regards,
Amund Tveit (@atveit)


Appendix – Deep Learning benchmark of Nvidia GTX 1070

The benchmark in the table below – from – was very favorable in the direction of 1070 (note that this compares 1080 and 1070 to older generation GPUs)


Continue Reading

Deep Learning for Authentication

This blog post has recent papers about Deep Learning for authentication, e.g. iris (eye), fingerprint and various other patterns of the user, e.g. behavior writing style (stylometry) and other user patterns. Partially related is the Quora question and answer: How can Deep Learning be used for Computer Security?

Best regards,
Amund Tveit

Year  Title Author
2016   Deep-Learning-Based Security Evaluation on Authentication Systems Using Arbiter PUF and Its Variants  R Yashiro, T Machida, M Iwamoto, K Sakiyama
2016   Touch based active user authentication using Deep Belief Networks and Random Forests  YS Lee, W Hetchily, J Shelton, D Gunn, K Roy
2016   System And Method For Applying Digital Fingerprints In Multi-Factor Authentication  J Oberheide, D Song
2016   Optimized Features Extraction of IRIS Recognition by Using MADLA to Ensure Secure Authentication  S Pravinthraja, K Umamaheswari
2015   Continuous Authentication using Stylometry  ML Brocardo
2015   Smart Kiosk with Gait-Based Continuous Authentication  DT Phan, NNT Dam, MP Nguyen, MT Tran, TT Truong
2015   Keystroke Dynamics User Authentication Using Advanced Machine Learning Methods  Y Deng, Y Zhong
2015   Utilizing deep neural nets for an embedded ECG-based biometric authentication system  A Page, A Kulkarni, T Mohsenin
2014   Improved Perception-Based Spiking Neuron Learning Rule for Real-Time User Authentication  H Qu, X Xie, Y Liu, M Zhang, L Lu
Continue Reading

Analyzing Twitter Data with Deep Learning

Tweets (i.e. microblogging with very short documents) is a frequent data source in machine learning, e.g. for sentiment analysis and financial (stock) predictions. Here are some recent papers related to use of Analyzing Twitter Data with Deep Learning. (note: Twitter itself also does Deep Learning on Twitter data with its Cortex Team). Many of these papers could probably also apply similar data sources such as e.g. Weibo or Facebook.

Best regards,

Amund Tveit (Twitter: @atveit)

Year  Title Author
2016   Finki at SemEval-2016 Task 4: Deep Learning Architecture for Twitter Sentiment Analysis  D Stojanovski, G Strezoski, G Madjarov, I Dimitrovski
2016   ASU: An Experimental Study on Applying Deep Learning in Twitter Named Entity Recognition  MN Gerguis, C Salama, MW El
2016   LyS at SemEval-2016 Task 4: Exploiting Neural Activation Values for Twitter Sentiment Classification and Quantification  D Vilaresa, Y Dovala, MA Alonsoa
2016   Exploiting Twitter Moods to Boost Financial Trend Prediction Based on Deep Network Models  Y Huang, K Huang, Y Wang, H Zhang, J Guan, S Zhou
2016   Detecting and Analyzing Bursty Events on Twitter  PPH Kung
2016   Twitter spam detection based on deep learning  T Wu, S Liu, J Zhang, Y Xiang
2016   PotTS at SemEval-2016 Task 4: Sentiment Analysis of Twitter Using Character-level Convolutional Neural Networks.  U Sidarenka, KL Straße
2016   Recurrent Neural Networks for Customer Purchase Prediction on Twitter  M Korpusik, S Sakaki, FCYY Chen
2015   Shared tasks of the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity recognition  T Baldwin, MC de Marneffe, B Han, YB Kim, A Ritter
2015   Prediction of changes in the stock market using twitter and sentiment analysis  IV Serban, DS González, X Wu
2015   Twitter Sentiment Analysis Using Deep Convolutional Neural Network  D Stojanovski, G Strezoski, G Madjarov, I Dimitrovski
2015   Detecting and Disambiguating Locations Mentioned in Twitter Messages  D Inkpen, J Liu, A Farzindar, F Kazemi, D Ghazi
2015   Exploring co-learning behavior of conference participants with visual network analysis of Twitter data  H Aramo
Continue Reading

Deep Learning for Emotion Recognition and Analysis

User interfaces can gain from getting a better understanding of human emotion. This blog post has recent papers related to Deep Learning and Emotion, note that Emotion and Deep Learning has also been previously to some degree been in previous blog posts: Deep Learning with Long Short-Term Memory (LSTM), Deep Learning for Music, Deep Learning for Alzheime Diagnostics and Decision Support and Deep Learning in combination with EEG electrical signals from the brain.

Recommend to check out Chew-Yean Yam‘s (Principal Data Scientist, Microsoft) blog post Emotion Detection and Recognition from Text using Deep Learning.

Best regards,
Amund Tveit

Year  Title Author
2016   Towards real-time Speech Emotion Recognition using deep neural networks  HM Fayek, M Lech, L Cavedon
2016   A Multi-task Learning Framework for Emotion Recognition Using 2D Continuous Space  R Xia, Y Liu
2016   TrueHappiness: Neuromorphic Emotion Recognition on TrueNorth  PU Diehl, BU Pedroni, A Cassidy, P Merolla, E Neftci
2016   Collaborative expression representation using peak expression and intra class variation face images for practical subject-independent emotion recognition in videos  SH Lee, WJ Baddar, YM Ro
2016   Discriminatively Trained Recurrent Neural Networks for Continuous Dimensional Emotion Recognition from Audio  F Weninger, F Ringeval, E Marchi, B Schuller
2016   Feature Transfer Learning for Speech Emotion Recognition  J Deng
2016   Emotion Recognition in Speech with Deep Learning Architectures  M Erdal, M Kächele, F Schwenker
2016   Error-correcting output codes for multi-label emotion classification  C Li, Z Feng, C Xu
2016   Software Effort Estimation Framework To Improve Organization Productivity Using Emotion Recognition Of Software Engineers In …  BP Rao, PS Ramaiah
2016   How Deep Neural Networks Can Improve Emotion Recognition on Video Data  P Khorrami, TL Paine, K Brady, C Dagli, TS Huang
2016   Automatic emotion recognition in the wild using an ensemble of static and dynamic representations  MM Ghazi, HK Ekenel
2016   HoloNet: towards robust emotion recognition in the wild  A Yao, D Cai, P Hu, S Wang, L Sha, Y Chen
2016   Deep learning driven hypergraph representation for image-based emotion recognition  Y Huang, H Lu
2016   A Review on Deep Learning Algorithms for Speech and Facial Emotion Recognition  CP Latha, M Priya
2016   Novel Affective Features For Multiscale Prediction Of Emotion In Music  N Kumar, T Guha, CW Huang, C Vaz, SS Narayanan
2016   Facial emotion detection using deep learning  DL Spiers
2016   Speech Emotion Recognition Based on Deep Belief Networks and Wavelet Packet Cepstral Coefficients.  Y Huang, A Wu, G Zhang, Y Li
2016   Audio-Video Based Multimodal Emotion Recognition Using SVMs and Deep Learning  B Sun, Q Xu, J He, L Yu, L Li, Q Wei
2016   Feature Learning via Deep Belief Network for Chinese Speech Emotion Recognition  S Zhang, X Zhao, Y Chuang, W Guo, Y Chen
2016   Transfer Learning of Deep Neural Network for Speech Emotion Recognition  Y Huang, M Hu, X Yu, T Wang, C Yang
2016   Multiagent Social Influence Detection Based on Facial Emotion Recognition  P Mishra, R Hadfi, T Ito
2016   Emotion Recognition Using Facial Expression Images for a Robotic Companion  V Palade
2016   Emotion Recognition from Speech Signals Using Deep Learning Methods  S Pathak, MV Kolhe
2016   Multimodal Emotion Recognition Using Multimodal Deep Learning  W Liu, WL Zheng, BL Lu
2016   Self-Configuring Ensemble of Neural Network Classifiers for Emotion Recognition in the Intelligent Human-Machine Interaction  E Sopov, I Ivanov
2016   Facing Realism in Spontaneous Emotion Recognition from Speech: Feature Enhancement by Autoencoder with LSTM Neural Networks  Z Zhang, F Ringeval, J Han, J Deng, E Marchi
2016   The University of Passau Open Emotion Recognition System for the Multimodal Emotion Challenge  J Deng, N Cummins, J Han, X Xu, Z Ren, V Pandit
2016   Building a large scale dataset for image emotion recognition: The fine print and the benchmark  Q You, J Luo, H Jin, J Yang
2016   Emotion Recognition Using Multimodal Deep Learning  W Liu, WL Zheng, BL Lu
2016   Emotion Prediction from User-Generated Videos by Emotion Wheel Guided Deep Learning  CT Ho, YH Lin, JL Wu
2016   FDBN: Design and development of Fractional Deep Belief Networks for speaker emotion recognition  K Mannepalli, PN Sastry, M Suman
2016   A novel Adaptive Fractional Deep Belief Networks for speaker emotion recognition  K Mannepalli, PN Sastry, M Suman
2016   Unsupervised domain adaptation for speech emotion recognition using PCANet  Z Huang, W Xue, Q Mao, Y Zhan
2016   Learning Auditory Neural Representations for Emotion Recognition  P Barros, C Weber, S Wermter
2016   Towards an” In-the-Wild” Emotion Dataset Using a Game-based Framework  W Li, F Abtahi, C Tsangouri, Z Zhu
2016   Deep Learning for Emotion Recognition in Faces  A Ruiz
2016   Emotion Classification on face images  M Jorda, N Miolane, A Ng
2016   Paralinguistic Speech Recognition: Classifying Emotion in Speech with Deep Learning Neural Networks  ER Segal
2016   Architecture of Emotion in Robots Using Convolutional Neural Networks  M Ghayoumi, AK Bansal
2016   Emotion recognition from face dataset using deep neural nets  D Das, A Chakrabarty
2016   Recognize the facial emotion in video sequences using eye and mouth temporal Gabor features  PI Rani, K Muneeswaran
2016   Deep Learning Based Emotion Recognition from Chinese Speech  W Zhang, D Zhao, X Chen, Y Zhang
2016   Bi-Modal Music Emotion Recognition: Novel Lyrical Features and Dataset  R Malheiro, R Panda, P Gomes, R Paiva
2016   Speech Emotion Recognition Using Voiced Segment Selection Algorithm  Y Gu, E Postma, HX Lin, J van den Herik
2015   Multi-modal Dimensional Emotion Recognition using Recurrent Neural Networks  S Chen, Q Jin
2015   Quantification of Cinematography Semiotics for Video-based Facial Emotion Recognition in the EmotiW 2015 Grand Challenge  AC Cruz
2015   EEG Based Emotion Identification Using Unsupervised Deep Feature Learning  X Li, P Zhang, D Song, G Yu, Y Hou, B Hu
2015   Pattern-Based Emotion Classification on Social Media  E Tromp, M Pechenizkiy
2015   Investigating Critical Frequency Bands and Channels for EEG-based Emotion Recognition with Deep Neural Networks  WL Zheng, BL Lu
2015   Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network  WL Zheng, HT Guo, BL Lu
2015   Analysis of Physiological for Emotion Recognition with IRS Model  C Li, C Xu, Z Feng
2015   Emotion Recognition in the Wild via Convolutional Neural Networks and Mapped Binary Patterns  G Levi, T Hassner
2015   Negative Emotion Recognition in Spoken Dialogs  X Zhang, H Wang, L Li, M Zhao, Q Li
2015   Combining Multimodal Features within a Fusion Network for Emotion Recognition in the Wild  B Sun, L Li, G Zhou, X Wu, J He, L Yu, D Li, Q Wei
2015   A Deep Feature based Multi-kernel Learning Approach for Video Emotion Recognition  W Li, F Abtahi, Z Zhu
2015   Recurrent Neural Networks for Emotion Recognition in Video  S Ebrahimi Kahou, V Michalski, K Konda, R Memisevic
2015   Learning Speech Emotion Features by Joint Disentangling-Discrimination  W Xue, Z Huang, X Luo, Q Mao
2015   Data selection for acoustic emotion recognition: Analyzing and comparing utterance and sub-utterance selection strategies  D Le, EM Provost
2015   Leveraging Inter-rater Agreement for Audio-Visual Emotion Recognition  Y Kim, EM Provost
2015   The Research on Cross-Language Emotion Recognition Algorithm for Hearing Aid  X Shulan, W Jilin
2015   Optimized multi-channel deep neural network with 2D graphical representation of acoustic speech features for emotion recognition  MN Stolar, M Lech, IS Burnett
2015   EmoNets: Multimodal deep learning approaches for emotion recognition in video  SE Kahou, X Bouthillier, P Lamblin, C Gulcehre
2015   Deep learninig of EEG signals for emotion recognition  Y Gao, HJ Lee, RM Mehmood
2015   Emotion Recognition & Classification using Neural Networks  K Koupidis, A Ioannis
2015   Emotion recognition from embedded bodily expressions and speech during dyadic interactions  PM Müller, S Amin, P Verma, M Andriluka, A Bulling
2015   Speech emotion recognition with unsupervised feature learning  Z HUANG, W XUE, Q MAO
2015   Emotion identification by facial landmarks dynamics analysis  A Bandrabur, L Florea, C Florea, M Mancas
2014   Speech Emotion Recognition Using CNN  Z Huang, M Dong, Q Mao, Y Zhan
2014   Multi-scale Temporal Modeling for Dimensional Emotion Recognition in Video  L Chao, J Tao, M Yang, Y Li, Z Wen
2014   Improving generation performance of speech emotion recognition by denoising autoencoders  L Chao, J Tao, M Yang, Y Li
2014   Acoustic emotion recognition using deep neural network  J Niu, Y Qian, K Yu
2014   Prosodic, spectral and voice quality feature selection using a long-term stopping criterion for audio-based emotion recognition  M Kächele, D Zharkov, S Meudt, F Schwenker
2014   Emotion Modeling and Machine Learning in Affective Computing  K Kim
2014   Emotion Recognition in the Wild with Feature Fusion and Multiple Kernel Learning  JK Chen, Z Chen, Z Chi, H Fu
2014   A Study of Deep Belief Network Based Chinese Speech Emotion Recognition  B Chen, Q Yin, P Guo
Continue Reading